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Natural sounds possess characteristic statistical regularities. Recent research suggests that
mammalian auditory processing maximizes information about these regularities in its internal
representation while minimizing encoding cost �Smith, E. C. and Lewicki, M. S. �2006�. Nature
�London� 439, 978–982�. Evidence for this “efficient coding hypothesis” comes largely from
neurophysiology and theoretical modeling �Olshausen, B. A., and Field, D. �2004�. Curr. Opin.
Neurobiol. 14, 481–487; DeWeese, M., et al. �2003�. J. Neurosci. 23, 7940–7949; Klein, D. J.,
et al. �2003�. EURASIP J. Appl. Signal Process. 7, 659–667�. The present research provides
behavioral evidence for efficient coding in human auditory perception using six-channel
noise-vocoded speech, which drastically limits spectral information and degrades recognition
accuracy. Two experiments compared recognition accuracy of vocoder speech created using
theoretically-motivated, efficient coding filterbanks derived from the statistical regularities of
speech against recognition using standard cochleotopic �logarithmic� or linear filterbanks.
Recognition of the speech created using efficient encoding filterbanks was significantly more
accurate than either of the other classes. These findings suggest potential applications to cochlear
implant design. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3158939�

PACS number�s�: 43.66.Ba, 43.71.An, 43.66.Ts, 43.72.Gy �RSN� Pages: 1312–1320
I. INTRODUCTION

Perceptual systems are limited capacity channels in that
they may encode and transmit only a finite amount of infor-
mation over any period of time. Mirroring the bandwidth
issues that plagued early telecommunications and now elec-
tronic information exchange, perceptual systems face the
seemingly intractable dilemma of coding efficiency; they
must balance high-fidelity information transmission against
the overall encoding cost to the system.

Although the problem of transmitting a high-fidelity,
low-cost code may seem intractable, information theory
states that optimally efficient codes, which carry the most
information at the lowest cost, should match the statistics of
the signals they represent �Shannon, 1948; MacKay, 2003�.
A large body of evidence from theoretical and empirical re-
search in vision �Olshausen and Field, 1996; Sharpee et al.,
2006� suggests that efficiency may be central to perceptual
encoding �Barlow, 1961; Atick, 1992; Simoncelli and
Olshausen, 2001; Laughlin and Sejnowski, 2003�.

Recent empirical and theoretical research �Rieke et al.,
1995; Attias and Schreiner, 1998; Lewicki, 2002; Klein
et al., 2003� has indicated that these principles extend to the
auditory system. Smith and Lewicki �2006�, for example,
showed that auditory nerve response matches a theoretically-
predicted efficient code for representing the diverse sounds
of natural acoustic environments. In other words, the
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cochlear code reflects the statistics, both spectral power and
higher-order �phase� statistics, of natural sounds. At a neural
level, increased coding efficiency of natural signals has been
repeatedly demonstrated �Rieke et al., 1995; Attias and
Schreiner, 1998; Vinje and Gallant, 2002; Sharpee et al.,
2006�. Afferent fibers from the peripheral auditory system of
the bullfrog better encode sounds with the spectrum of mat-
ing calls than broad-band noise �Rieke et al., 1995�. Simi-
larly, neurons in the cat’s inferior colliculus exhibit increased
coding efficiency for narrow-band noise with “naturalistic”
amplitude modulations versus “non-naturalistic” modula-
tions �Attias and Schreiner, 1998; Escabi et al., 2003�. Al-
though these results support the efficient coding hypothesis
in neural auditory processing, they provide no direct insight
into the extent to which observed neural coding differences
have behavioral consequences in human perception.

In the present research, we examine this question di-
rectly by measuring human speech recognition under chal-
lenging perceptual circumstances. The underlying hypothesis
guiding this work is that if coding efficiency has behavioral
consequences, complex sounds created to match the statistics
of natural sounds should have a perceptual advantage over
sounds that diverge from environmental statistics. We use
noise-excited vocoder speech �often used to mimic cochlear
implant output in normal-hearing listeners; Shannon et al.,
1995�, to create a challenging auditory perceptual task within
which this advantage might be measured as gradations in

speech intelligibility.
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II. VOCODING

In noise-vocoded speech, sounds are stripped of their
fine spectral resolution and left with only their amplitude
envelope via an algorithm similar to that used in cochlear
implants �Zeng et al., 2004b�. A filterbank composed of lim-
ited number of filters �6 in the present work� separates
speech sounds into a set of band-limited channels, with the
choice of filterbank determining the frequency bands �e.g.,
linear versus logarithmic frequency tiling�. The amplitude
envelope of each channel, the slowly time-varying dynamics
of the speech within that frequency band, is separated from
its fine spectral detail via half-wave rectification followed by
a 150 Hz low-pass filter. Each of these resulting envelopes is
used to modulate the output of the Gaussian noise, giving the
noise the low-frequency temporal dynamics of the original
speech. Finally, each channel of modulated noise is again
filtered so that its frequency range matches that of the origi-
nal channel, and they are added back together, producing a
single waveform. Through this process, noise-vocoded
speech preserves the temporal dynamics of its limited num-
ber of frequency channels but has no spectral resolution
within each channel, though some spectral information can
be recovered by integrating information across channels �Nie
and Zeng, 2004� allowing listeners hear some or all of the
original speech steam. The change between original speech
and its vocoder counterpart is illustrated in Fig. 1 where four
spectrograms show how the acoustic frequency changes
across time. Natural speech has complex spectral character-
istics �Fig. 1�a��. After vocoder transformation with six fre-
quency channels, the sound loses nearly all fine spectral de-
tail; however, the temporal envelopes of the six channels
remain �Figs. 1�b�–1�d� showing three different choices of
filterbanks�. Although the frequency information is severely
degraded, the envelope retains many important cues for
speech perception �Shannon et al., 1995; Smith et al., 2002�.
The resulting sounds can be quite difficult to understand but
are clearly speech-like and, for a six-channel vocoder, rea-
sonably intelligible with some practice.

Key to the our investigation of the consequences of ef-
ficient coding on human auditory perception, the content of
each channel �and the qualities of sound produced� depends
on the characteristics of the filterbank. Their experiments
manipulate the form of the six filters comprising the filter-
bank affecting, for example, how they tile the frequency di-
mension, as illustrated in Fig. 2. The set of filters shown in
Fig. 2�a� �“linear”� simply tiles temporally-symmetric, equal-
bandwidth band-pass filters linearly across the frequency di-
mension. The second set of filters �Fig. 2�b�, “cochleotopic”�
is more natural in that it mimics the near-logarithmic
frequency-coding characteristics of the cochlea whereby
lower frequencies are sampled with finer resolution �smaller
bandwidths� than are higher frequencies �Bekesy, 1960;
Greenwood, 1961�. A spectrogram of vocoder speech using
this filterbank is shown in Fig. 1�b�. Noise-excited vocoder
speech processed with a cochleotopic filterbank is generally
better understood than speech processed using a linearly-

tiled filterbank �Shannon et al., 2003�, but it is unclear
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whether the advantage reflects a better match to the fre-
quency representation of the auditory system or the spectral
statistics of natural sounds.

It is also possible, however, that the cochleotopic filter-
bank better reflects the statistical structure of speech acous-
tics, and that it is this quality which drives the improved
performance. It is not possible to distinguish these two hy-
potheses comparing perception using cochleotopic versus
linear filterbanks as the cochleotopic set matches both the
biology and the sound statistics better than does the linear
set. To address this confound, we will use a machine learning
algorithm to analyze the statistics of speech acoustics and
design a new filterbank to reflect the statistical structure.

III. EFFICIENT CODING HYPOTHESIS

According to the efficient coding hypothesis, perception
should be optimally adapted to the statistics of natural sig-
nals such that they carry the most information at the least
cost. Therefore, perceptual performance should be best when
sensory codes match the statistics of environmental stimuli.
To test this prediction, we use a computational model of

FIG. 1. Spectrograms of the utterance “Where were you while we were
away?” Time unfolds along the x-axis, and frequency is presented along the
y-axis and amplitude is illustrated with intensity �dark is higher amplitude�.
Unmodified speech �a� possesses fine spectral detail. Vocoder transforma-
tions of this utterance using three different, six-channel filterbanks ��b� co-
chleotopic; �c� efficient gammatone-smoothed; �d� efficient spline-
smoothed, here with six channels� compress the spectral information within
a channel so that only temporal modulation of six coarse frequency bands
remains. The choice of filterbank determines how the spectral information is
partitioned and influences the amplitude modulations extracted from each
channel.
efficient auditory coding �Smith and Lewicki, 2006� to opti-

and L. L. Holt: Efficient coding in human auditory perception 1313



mize a set of functions with respect to the information car-
ried by the large TIMIT speech corpus training set �Garofolo
et al., 1990�. This model allows an explicit prediction of the
dimensions of perceptual sensitivity. In it, sound, x�t�, is gen-
erated by a linear superposition of a set of functions,
�1 , . . . ,�M, which can be positioned arbitrarily and indepen-
dently in time. The mathematical form of the representation
with additive noise is

x�t� = �
m=1

M

�
i=1

nm

si
m�m�t − �i

m� + ��t� , �1�

where �i
m and si

m are the temporal position and coefficient of
the ith instance of kernel �m, respectively. The notation nm

indicates the number of instances of �m, which need not be
the same across kernel functions. The kernel functions are
not restricted in form or length, and both the kernel shapes
and their lengths were adapted to optimize coding efficiency;
in the results below, the kernels take on a variety of shapes
and range in length from 10 to 100 ms. This provides a
mathematical description of sound waveforms that has suffi-
cient flexibility to encode arbitrary acoustic signals and en-
compass a broad range of potential auditory codes.

The key theoretical abstraction of the model is that the
acoustic signal can be encoded most efficiently by decom-
posing it in terms of discrete acoustic elements, each of
which has a precise amplitude and temporal position. This
also yields a code that is time-relative and does not depend
on artificial blocking of the signal �Smith and Lewicki,
2005a, 2005b�. One interpretation of each analog �i

m, si
m pair

is that it represents a local population of �binary� auditory
nerve spikes firing probabilistically in proportion to the un-
derlying analog value.

To code speech sounds efficiently, we need to determine
both the optimal values of �i

m and si
m �encoding� and the

FIG. 2. The power spectra for all six filters from the four different filter-
banks are shown. The top row shows the frequency tiling of the “linear”
filterbank. The linear frequency tiling of the set can be clearly seen to the
right. The cochleotopic frequency tiling is shown in row B. The next two
rows show the learned “efficient” filters smoothed either by gammatone
fitting or spline-smoothing.
optimal kernel functions �m �learning�. From Eq. �1�, coding
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efficiency can be defined approximately as the number of
“spikes” �nonzero coefficient values� required to achieve a
desired level of precision, which is defined by the variance of
the additive noise ��t�. This assumes that the goal of coding
is to represent the entire acoustic signal and that coding ef-
ficiency is most closely related to the number of spikes in the
code. Other definitions are possible within this framework,
but this definition has the advantage of starting from a mini-
mal set of assumptions.

Although the generative form of the model is linear, in
other words the signal is a linear function of the representa-
tion, inferring the optimal representation for a signal is
highly non-linear and computationally complex. Here we
compute the values of �i

m and si
m for a given signal by using

a matching pursuit algorithm �Mallat and Zhang, 1993�,
which iteratively approximates the input signal and has been
shown to yield highly efficient representations for a broad
range of sounds �Smith and Lewicki, 2005a, 2005b�. In
matching pursuit, the current residual signal �initialized as
the original sound� is projected onto the dictionary of kernel
functions. The projection with the largest inner product is
subtracted out, and its coefficient and time recorded. For the
results reported here, the encoding halts when si

m falls below
a pre-set “spiking” threshold.

The goal of learning in the efficient coding model is to
find a set of functions for which the coefficients are maxi-
mally efficient �i.e., carry the most information about the
sound at the lowest cost� with respect to the given training
data. We can rewrite Eq. �1� in probabilistic form in which
we assume that the noise is Gaussian and the prior probabil-
ity of a spike, p�s�, is sparse �i.e., comes from a probability
distribution which produces very few nonzero values�. The
kernel functions are optimized by performing gradient ascent
on the approximate log-data probability,

�

��m
log�p�x���� =

�

��m
log�p�x��,s��� + log�p�s���

=
1

2��

�

��m
�x − �

m=1

M

�
i=1

nm

ŝi
m�x − x̂�i

m��2

=
1

��
�

i

ŝ j
m�x − x̂��i

m, �2�

where �x− x̂��i
m indicates the residual error over the extent of

kernel �m at position �i
m. The estimated kernel gradient is

thus a weighted average of the residual error. For training
here, we restrict the set to six functions, which were initial-
ized as 100-sample Gaussian noise, and the spiking threshold
�minimum value of si

m� was set at 0. Filters were derived
from the resulting kernel functions using reverse correlation
�Smith and Lewicki, 2006�.

The filterbanks shown in Fig. 2�c� �“efficient �gamma-
tone fit�”� and Fig. 2�d� �“efficient �spline smoothed�”� were
learned using the efficient coding model �Smith and Lewicki,
2006� using two different smoothing methods to regularize
the functions. These filters represent an optimal code for the
statistical properties of the speech database when only six
channels are available. The frequency tiling from the effi-

cient coding model �Figs. 2�c� and 2�d�� is much more biased
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to the low frequencies than the cochleotopic model �Fig.
2�b��. This can also be seen in the difference between the
vocoder spectrograms in Fig. 1, which shows the difference
between speech transformed using the cochleotopic vocoder
�Fig. 1�b��, the gammantone-smoothed “efficient” vocoder
�Fig. 1�c�� and the spline-smoothed efficient vocoder �Fig.
1�d��. Moreover, the form of the efficient functions is not
fixed; it combines both gammatone-like filters in the lower
frequencies with broadly-tuned, symmetric filters at the
higher frequencies.

If there is efficient coding in auditory processing, one
would expect perceptual performance to align with the effi-
cient filters. The distinction between the filters in Figs. 2�c�
and 2�d� and the cochleotopic filters of Fig. 2�b� may seem
counter-intuitive given that for larger filterbanks �30
+filters�, the optimal filterbank very closely match both in-
dividual structure and population statistics of filters esti-
mated from single-unit recordings of auditory nerve fibers
�Smith and Lewicki, 2006�. This correspondence is lost when
many fewer are channels available, as with noise-vocoded
speech or cochlear implants. Spectral resolution is limited
and the resulting filter characteristics change from the coch-
leotopic filterbank typically thought to best characterize the
frequency processing of the cochlea. For six-channel noise-
vocoded speech, the optimally efficient code and the
cochlear code diverge, providing a means to dissociate them
experimentally.

If efficient coding carries perceptual benefits, speech
recognition accuracy should be greatest for noise-vocoded
speech created with efficient filters because these filters best
characterize the statistics of speech within the limited capac-
ity of six channels, preserving the available information. We
explicitly tested this prediction by having adult human lis-
teners transcribe noise-vocoded speech produced with the fil-
terbanks shown in Fig. 2.

IV. METHODS

Following the approach of previous vocoder experi-
ments �Shannon et al., 1995�, we measured speech intelligi-
bility in two distinct tasks: identifying words in continuous
speech �sentences, Experiment 1� and identifying phonemes
from non-word utterances �non-words, Experiment 2�.

For Experiment 1, there were 168 distinct English sen-
tences �42 sentences/condition�, each spoken by a different
native-English speaker �TIMIT corpus: Garofolo et al.,
1990�. The assignment of sentences to filtering conditions
was counter-balanced such that, across participants, each
sentence was presented in each of the four conditions but no
sentence or speaker was repeated for an individual partici-
pant. Sentences ranged in length from 8–16 words �approxi-
mately 1–6 s� for a total of 1564 words. The sentences used
in the experiment were drawn from the TIMIT testing set and
were distinct from those used in the training of the compu-
tational model that produced the efficient filterbanks.

Four stimulus conditions were created by synthesizing
vocoder versions of each item using one of three filterbanks
plus using the original, unmodified speech as a control. The

filterbanks were composed of six finite impulse response fil-
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ters, with the number of filters chosen to produce sufficiently
challenging stimuli so as to avoid ceiling effects. The linear
and cochleotopic filterbanks were composed of six Hanning-
window band-pass filters. The filters were tiled across 0–7
kHz with either linear or cochleotopic �logarithmic� place-
ment �see Fig. 2�.

For the efficient filterbanks, the “raw” �unsmoothed� fil-
ters comprising them were identical in both experiments.
Kernel functions were trained on the 4956 sentences from
the TIMIT training set. Training involved encoding a batch
of 100 full sentences on each iteration and then updating the
kernel functions based on the gradient estimated from the
batch. Training continued until the set reach convergence,
about 10,000 iterations. Filters were then derived from the
functions. These filters were then smoothed to regularize the
filters, removing residual noise from the learning algorithm.
In experiment 1, the efficient filters were fitted with gamma-
tone functions, a parametrized approximation of the learned
functions composed of sine wave modulated by a gamma
function �Fig. 2�c��.

Sixteen listeners participated in Experiment 1. Partici-
pants were college-age native-English speakers from Carn-
egie Mellon University with no reported or obvious speaking
or hearing disorders. Participants received undergraduate
Psychology course credit for participation. Seated in indi-
vidual sound-attenuated booths, participants listened to each
stimulus and typed what they heard. In Experiment 1, par-
ticipants were told that some of the sentences may be diffi-
cult to understand, but a response must be made on each
trial. They were allowed to hear each sentence only once. In
neither experiment was there a pre-exposure or training pe-
riod for the participants with the vocoder speech. Each par-
ticipant listened to 62 stimuli from each condition �186 to-
tal�. In both experiments, order of stimulus presentation was
randomly permuted for each participant.

The ALVIN experiment-control software �Hillenbrand
and Gayvert, 2005� was used for stimulus presentation and
data collection. Acoustic presentation was under the control
of Tucker Davis Technologies �Alachua, FL� System II hard-
ware; stimuli were converted from digital to analog, ampli-
fied, and presented dichotically over linear headphones
�Beyer DT-150, Berlin, Germany� at approximately 70 dB
SPL�A�.

The stimuli for Experiment 2 consisted of non-word syl-
lables spoken in isolation �Shannon et al., 1999�. Each
stimulus was composed of two distinct utterances of the
same syllable separated by 500 ms of silence. The stimuli
consisted of both vowel-consonant-vowel �VCV� syllables
such as “aba” and consonant-vowel �CV� syllables such as
“bi” representing the full range of combination described in
Shannon et al., 1999. Stimuli were drawn from a corpus of
ten speakers �five male, five female� to include 46 unique
syllables from each speaker. Both the sentence and non-word
stimuli were sampled at 16 kHz with 16-bit resolution.

In Experiment 2, we used spline-smoothing to regularize
the raw filters �Fig. 2�d��, which offers a less biased estimate
of the underlying function than gammatone fitting. As can be
seen in Fig. 2�d�, the gammatone fitting rounded the power

spectra of the filters, even cutting off the high-end of the
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highest-frequency filter. The spline smoothed set better-
preserved these features. In both cases, however, the exact
same set of raw filters, derived from learning the statistics of
the TIMIT training set, were used. Only the choice of
smoothing techniques changed.

Fourteen CMU undergraduate students, none of whom
had participated in Experiment 1, participated in Experiment
2. They were instructed that they would hear a speech sound
repeated twice and they were to type what they heard. For
simplicity, the linear condition was removed to focus on the
comparison of interest, cochleotopic versus efficient. All
other methodological details were identical to Experiment 1.

V. RESULTS

Experiment 1. Each participant’s performance was
evaluated by comparing every word transcribed against the
set of words in the original sentence. The typed responses
were hand coded as “correct” if a match could be found.
Minor alterations, such as adding -s or -ed, were not scored
as correct but homophones were �e.g., sea versus see�. Com-
pound words �e.g., houseboat, bittersweet, sleepwalk, etc.�
were treated as multiple words. Data from three participants
were coded independently by two coders; the two sets of
scores were highly correlated �r�0.99�.

Each word in the original sentence was treated as inde-
pendent �see below for further discussion of this issue� and
the overall probability of a correct response was computed
for each filterbank condition. As shown in Fig. 3, although
intelligibility was greatly degraded for vocoded speech rela-
tive to original speech, intelligibility of vocoded speech was
highly influenced by filterbank choice. The mean percent
correct across participants for each condition were 13�4%,
37�6%, 56�6%, and 86�4% �mean�95% CI� for the
linear, cochleotopic, efficient, and control conditions, respec-
tively �planned Bonferroni-corrected pairwise comparisons
for all results were highly significant, p�0.001�. 15 of the
16 participants were significantly more accurate at transcrib-

FIG. 3. Average speech intelligibility across participants as a function of
condition. The control condition is unaltered speech. Error bars show 95%
confidence interval of the mean.
ing speech synthesized with efficient versus cochleotopic fil-
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ters �p�0.01�. Across participants, performance differed by
an average of 19% �efficient and cochleotopic filters, 56%
versus 37%, respectively; p�0.0001�.

Participants’ performance was little influenced by vari-
ous lexical variables. A small correlation was found between
word frequency �averaged from Kucera and Francis, 1967;
Brown, 1984� and participant accuracy �r=0.23�. There was
no significant relationship of word type �noun/verb/other�
and intelligibility �p=0.33�. There was a small, but signifi-
cant, increase in accuracy for words near the end of a sen-
tence versus those occurring near the beginning or middle
�5.4%, p�0.0001�. There was no significant effect of either
speaker or participant gender �p=0.13 and 0.33, respec-
tively�. Comparing performance between the first and second
half of the experiment shows a significant increase in percent
correct for both the cochleotopic �+4.2%; p-value=0.007�
and efficient conditions �+4.9% increase; p-value�0.0001�.
There was, however, no significant interaction between
early-late training and filter condition �p-value=0.3�.

Experiment 2. For the non-word task, performance was
measured by hand coding the response to each vowel and
consonant in an item as correct or “incorrect.” The entire
item was coded correct if all of its phonetic elements were
correct. As shown in Fig. 4�a�, overall accuracy was slightly
lower than Experiment 1: 31�8%, 49�9%, and 80�7%,
for the cochleotopic, efficient, and control conditions, re-
spectively �mean�95% CI�. Performance with vocoded
speech remained best with efficient filters �18% greater than
cochleotopic filters; p�0.0001�.

Performance gains differed based on the acoustic prop-
erties of the speech sounds. Participants were very accurate
at identifying vowels �Fig. 4�b��, nearing ceiling in the con-
trol condition �98% correct� and achieving 83% and 86%
correct in the efficient and cochleotopic conditions, respec-
tively. The small difference between vocoded-speech condi-
tions was not reliable �p=0.10�. Relative to vowels, accuracy
was much lower for consonants across all conditions �34%

FIG. 4. Speech intelligibility for non-word stimuli. Each subfigure shows
the accuracy of non-word speech identification across three conditions: co-
chleotopic filtering, efficient filtering, or control speech. The subplots show
mean performance for �a� whole items, �b� vowels, �c� non-fricative conso-
nants, and �d� fricatives. Error bars show the 95% confidence interval of the
mean.
for cochleotopic, 51% for efficient, and 82% for control�.
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Performance in the efficient condition improved significantly
between the first and second half of the experiment
�+15% ; p�0.0001� and a more modest improvement in
performance across experiment halves was observed for the
cochleotopic condition �+5.5% increase; p=0.03�. There was
no reliable difference in this learning effect across the differ-
ent filter types �p=0.1�.

Results of the theoretical modeling of Smith and
Lewicki �2006� suggest that noise-like, ambient natural
sounds represent a dimension in natural sound statistics dis-
tinct from acoustic transients. Based on this distinction, we
separated the consonant stimuli into two classes, fricative
and non-fricative consonants. Reanalyzing the data based on
these classes produced very different results. As shown in
Fig. 4�c�, performance on non-fricatives �e.g., stop conso-
nants, nasals and glides, such as /b/, /n/, and /l/� differed
markedly, 33% and 66% �p�0.0001� in the cochleotopic
and efficient conditions, respectively. In contrast, perfor-
mance with fricatives �Fig. 4�d�� was quite low in all condi-
tions �35%, 36%, and 73% for cochleotopic, efficient, and
control� and it did not differ significantly between the
vocoded-speech conditions �p=0.4�.

There was a small, but unreliable, trend for better overall
performance with the VCV-stimuli compared to CV �53%
versus 50%; p=0.10�. As with the sentences, there was no
significant effect of either speaker �p=0.08� or participant
gender �p=0.19�.

VI. DISCUSSION

The results are consistent with a marked perceptual ben-
efit of efficient coding. Speech recognition accuracy was
greatest for noise-vocoded speech created with efficient fil-
ters. Given that these filters were created such that they best
characterized the regularities of speech within the limits of
six channels, it appears that the acoustic dimensions con-
veyed by the efficient filters provided listeners with more
information with which to identify words and phonemes. The
effect was dramatic. In the linear condition of the continuous
speech task, participants typically understood only one word
per sentence, consistent with previous findings that linear
frequency mapping degrades perceptual performance �Fu and
Shannon, 1999�. On average, participants understood nearly
twice as many words synthesized with the cochleotopic fil-
ters. In accordance with the efficient coding hypothesis,
though, the efficient representation further increased perfor-
mance, with participants identifying more than half the
words in each sentence, four times more than the linear con-
dition.

Even with a completely different stimulus set and non-
sense syllables in Experiment 2, the efficient filters produced
greater accuracy than cochleotopic filters for the non-word
stimuli. The non-word task also revealed that the benefit of
the efficient filters stemmed largely from benefits in non-
fricative consonant intelligibility. Nearly the entire increase
in performance between the filter conditions came from
those items. However, it should be noted that it is possible
that there is a ceiling effect confounding any effect on vowel

recognition.
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The pronounced increase in speech intelligibility in both
experiments strongly suggests that participants are sensitive
to the dimensions of speech acoustics predicted by the effi-
cient coding hypothesis, but it is not yet clear what drives
these improvements. One simple possibility is that the fre-
quency tiling learned by the efficient filters maximizes its
channel capacity �i.e., each channel carries an equal amount
of information�. To test this, we computed the variance of the
envelope output from each channel for each filterbank across
all stimuli used in the continuous speech task. Ideally, as-
suming independent, equal capacity channels, the variance
across all six channels should be equal, implying that each
channel is carrying equal amounts of independent informa-
tion. If the variance in any channel is low relative to the
others, then the total capacity of the system is underutilized.

The efficient filterbanks �using either gammatone- or
spline-smoothing� make fuller use of their channel capacity
than do the standard filterbanks; the higher-frequency filters
in the linear and cochleotopic filterbanks are relatively un-
used, forcing all of the information about the sound to be
carried by only two to four channels. The pressure to fully
utilize channel capacity explains why the frequency tiling of
the efficient filterbanks �as shown in Fig. 2� appears biased to
the low frequencies; these filters more equitably carry infor-
mation about speech.

Whereas this analysis makes use of signal statistics to
differentiate the information carried across filters in the fil-
terbank, it is also possible to consider what drives listeners’
sensitivity to the dimensions of speech acoustics predicted
by the efficient coding hypothesis from a psychoacoustic per-
spective. The articulation index �AI� has long been used to
evaluate the importance of different frequency bands for
speech recognition using perceptual measures �Fletcher and
Steinberg, 1929; French and Steinberg, 1947; Studebaker
et al., 1987; ANSI, 1997�. It is possible that perceptual
weighting across frequency of importance for speech is simi-
lar to the information-theoretic optimum. Figure 5�a� illus-
trates the band importance values for normal speech calcu-
lated using the AI �ANSI, 1997; 1/3 octave�. For each filter
in each filterbank, we computed the filter response at each
frequency band. The importance weighting for each filter can
be estimated as the dot product of the filters’ frequency re-
sponse �power spectrum� and the band importance values
shown in Fig. 5�a�. This provides a score for each filter that
indicates its importance to intelligibility. As is clear from
Fig. 5�b�, the efficient filterbank more evenly distributes
band importance across its constituent filters �see Table I�,
with a significantly higher mean and lower variance com-
pared to the cochleotopic and linear filterbanks. Thus, like
the analysis based on signal statistics, analysis based on
speech psychophysics �via the AI� also indicates that the ef-
ficient coding filters make fuller use of the channel capacity.

The results of the non-word task suggest that intelligi-
bility of non-fricative consonants, in particular, drives the
increase in intelligibility. In the case of stop consonants,
which make up 47% of the non-fricative consonants, the dis-
tinguishing characteristics are not purely functions of fre-
quency resolution but reflect higher-order, temporal structure

of sound �e.g., voice onset time, Lisker and Abramson, 1964;
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Steinschneider et al., 1999�. The temporal asymmetry of the
efficient filters may play a significant role here. This would
agree with the finding that significant linguistic information
is available in the temporal as well as spectral contents of
speech �Shannon et al., 1995�. Increased sensitivity to tem-
poral features like onsets suggests an influence of higher-
order sound structure on the dimensions of perceptual sensi-
tivity; second-order characteristics �i.e., the power spectrum�
are not particularly sensitive to transient, edge-like signal
structure �Field, 1987�.

Our decision to treat each word in the continuous speech
task as an independent measure greatly simplified analysis,
but it is not realistic. It is known that syntactic and semantic
contexts provided cues for sentence-level processing �Boo-
throyd and Nittrouer, 1988; Bronkhorst et al., 1993; Gibson,
1998�. Although the sentences in the TIMIT corpus have
little predictability, participants clearly exhibited evidence of
sentence-level processing. Correct responses were more
likely to occur in pairs than would be expected at random
and they were more likely to occur near the end of a sen-
tence. In the non-word task, though, participants were re-
quired only to produce a single syllable. It is unlikely that
cognitive load or context effects influenced the results, al-
though there may be contrast effects �Lotto and Arava-
mudhan, 2004�. Nonetheless, listeners’ performance in the
linear and cochleotopic conditions was significantly lower
than that observed by Shannon et al. �1995�; this is possibly
a result of our choice of test materials �Zeng et al., 2005�.
Syllables processed with an efficient filterbank were signifi-
cantly better recognized than those processed with a cochle-
otopic filterbank.

In Experiment 1, we chose to smooth the learned effi-
cient filters by fitting them with gammatones, allowing us to

TABLE I. The mean and variance of the importance weightings across the
filterbanks computed using the articulation index �AI�. Higher means and
smaller variances indicate greater and stronger correspondence between a
given filterbank and the AI.

Filter type Mean �CI� Variance �CI�

Linear 0.0682 �0.0138–0.1225� 0.0072 �0.0019–0.0190�
Cochleotopic 0.0776 �0.0462–0.1089� 0.0024 �0.0007–0.0063�
Efficient 0.0953 �0.0792–0.1114� 0.0006 �0.0001–0.0016�
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preserve the basic form of the learned filters using a model of
auditory filters common to the auditory modeling literature
�Patterson et al., 1988; Slaney, 1993; Lyon, 1996�. In Experi-
ment 2, we aimed to address some limitations of the gamma-
tone fitting by switching to spline-smoothing. For example,
with the highest-frequency efficient filter, the best-fit gam-
matone truncated the highest frequencies whereas the best-fit
spline did not. The smoothing in each experiment was per-
formed on the same set of the raw filters produced by the
computational model. Thus, the filters in both conditions re-
flect the statistics of the training set. The only difference
between them was the smoothing technique. Spline smooth-
ing, having many more free parameters, preserved more of
the true spectral shape of the optimized filters. It should be
noted that smoothing therefore introduced some differences
between the experiments; specifically, whether �Experiment
1� or not �Experiment 2� the highest-frequency �5–7 kHz�
information was incorporated into the sixth channel of the
vocoder. The consistent patterning of results across the two
experiments suggests that this difference did not have a sig-
nificant impact on the results or their interpretation.

A possible criticism of this research is the use of classic
linguistic categories �vowel, fricatives, etc.� that presuppose
a particular structure to speech. Phonemic categories were
used for stimulus categories as a rough approximation of the
natural structure of speech acoustics. Their use here should
not be taken as an assumption that phonemes represent a
fundamental of acoustic or cognitive representation. Rather,
their role here is only as a loose stand-in for dimensions of
perceptual variability. Given the efficient coding hypothesis,
ultimately it may be preferable to identify these dimensions
using efficient coding algorithms similar to those used to
train the filters here.

VII. CONCLUSION

As a unique compliment to the growing body of empiri-
cal and theoretical literature on efficient coding in neural
systems �Barlow, 1961, Olshausen and Field, 2004�, these
results provide direct behavioral evidence for the role of cod-
ing efficiency as a general principle in human auditory per-
ception. Yet to be addressed is the relevance of coding effi-

FIG. 5. �a� Band importance values
for normal speech calculated using the
AI �ANSI, 1997; 1/3 octave� indicates
the contribution of different frequency
bands to speech perception. The low-
est and highest-frequency bands con-
tribute much less to speech perception
than the range from 1 to 3 kHz. �b�
Importance weightings for each filter
are computed as the dot product of the
band importance values in �a� with the
normalized filter’s response at each
frequency band and indicates how the
filter pools information from each
band.
ciency to higher-level representation. Methodologies that
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further meld theoretical-experimental designs to test listen-
ers’ sensitivity to the statistics of complex everyday sounds
will be important for future exploration of efficiency in au-
ditory processing. For example, by adapting our generative
model to the acoustics of different spoken languages, we can
generate acoustic stimuli directly from the model that reflect
the differing low-level statistics of sounds from different lan-
guages absent any high-level, linguistic content.

Experiments with normal-hearing participants and vo-
coder speech previously have been useful in modeling
cochlear implant hearing �Shannon et al., 2003�. It is pos-
sible that consideration of the computational principles of
efficient coding may provide insight in cochlear implant ap-
plications.

Cochlear implants are by far the most successful neuro-
prosthetic devices and the only one in standard clinical use.
They employ direct, electrical stimulation of auditory nerve
fibers along the tonotopic axis of the cochlea to restore some
degree of hearing in individuals with peripheral hearing loss,
even in cases of profound deafness �Wilson et al., 1991;
Zeng et al., 2004a�. Unfortunately, despite 20 years of re-
search and wide clinical application, speech perception in
cochlear implant users remains highly variable and often
quite degraded �Shannon et al., 2003�.

In general, the present results emphasize the significance
of perceptual theory in neuroprosthetic design. Mimicking
the surface features of a perceptual system, as in the cochle-
otopic filtering scheme, may not provide as much leverage as
understanding a perceptual system’s computational prin-
ciples. The efficient coding hypothesis claims a specific com-
putational principle: optimally efficient codes which carry
the most information at the lowest cost should match the
statistics of the signals they represent. Here, we found that
the set of filters derived from a computational model trained
to optimally extract the statistics of a corpus of speech
passed more information normal-hearing participants could
use to identify speech in sentence and non-word contexts
than did more standard filtering schemes �linear, cochle-
otopic�.

Of course, there remain many open questions for this
line of research, and the specific algorithm used here may not
necessarily produce the same dramatic improvements in
speech intelligibility outside that laboratory. For example,
the algorithm used to learn the efficient filters has not taken
issues of electrode placement into account, which are essen-
tial in optimizing cochlear implant performance. Perceptual
performance is known to degrade sharply as the mismatch
between the frequency of the input channel and tonotopy of
the cochlea increases �Shannon et al., 1998; Fu and Shannon,
2002; Baskent and Shannon, 2005�. Although it is beyond
the scope of the current work, exploring issues regarding
adaptation by cochlear implant users to changes in place-
frequency mapping �Rosen et al., 1999; Fu et al., 2002b�
would be an important extension of this research. Alterna-
tively, expanding the efficient coding algorithm to incorpo-
rate constraints relevant to cochlear implants, such as
frequency-place mappings, might be even more valuable.

We have shown in this study that recognition perfor-

mance for perceptually degraded, vocoder speech improves
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when the vocoder filterbank matches the statistical structure
of speech acoustics. A machine learning algorithm based on
the efficient coding hypothesis was used to adapt the filter-
bank to speech structure. In two experiments, using stimuli
from two unrelated speech corpora, recognition accuracy was
superior for speech generated by the adapted filterbanks than
recognition using cochleotopic filterbanks. The adapted fil-
terbanks show greater spectral resolution in the frequency
range of speech formants, which plays a large role in the
higher recognition accuracy.
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